Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Quantum Hamiltonian simulation, fundamental in quantum algorithm design, extends far beyond its foundational roots, powering diverse quantum computing applications. However, optimizing the compilation of quantum Hamiltonian simulation poses significant challenges. Existing approaches fall short in reconciling deterministic and randomized compilation, lack appropriate intermediate representations, and struggle to guarantee correctness. Addressing these challenges, we present MarQSim, a novel compilation framework. MarQSim leverages a Markov chain-based approach, encapsulated in the Hamiltonian Term Transition Graph, adeptly reconciling deterministic and randomized compilation benefits. Furthermore, we formulate a Minimum-Cost Flow model that can tune transition matrices to enforce correctness while accommodating various optimization objectives. Experimental results demonstrate MarQSim's superiority in generating more efficient quantum circuits for simulating various quantum Hamiltonians while maintaining precision.more » « lessFree, publicly-accessible full text available June 10, 2026
-
Free, publicly-accessible full text available June 20, 2026
-
Free, publicly-accessible full text available June 4, 2026
-
Free, publicly-accessible full text available March 1, 2026
-
Chakraborty, Supratik; Jiang, Jie-Hong Roland (Ed.)Quantum Computing (QC) is a new computational paradigm that promises significant speedup over classical computing in various domains. However, near-term QC faces numerous challenges, including limited qubit connectivity and noisy quantum operations. To address the qubit connectivity constraint, circuit mapping is required for executing quantum circuits on quantum computers. This process involves performing initial qubit placement and using the quantum SWAP operations to relocate non-adjacent qubits for nearest-neighbor interaction. Reducing the SWAP count in circuit mapping is essential for improving the success rate of quantum circuit execution as SWAPs are costly and error-prone. In this work, we introduce a novel circuit mapping method by combining incremental and parallel solving for Boolean Satisfiability (SAT). We present an innovative SAT encoding for circuit mapping problems, which significantly improves solver-based mapping methods and provides a smooth trade-off between compilation quality and compilation time. Through comprehensive benchmarking of 78 instances covering 3 quantum algorithms on 2 distinct quantum computer topologies, we demonstrate that our method is 26× faster than state-of-the-art solver-based methods, reducing the compilation time from hours to minutes for important quantum applications. Our method also surpasses the existing heuristics algorithm by 26% in SWAP count.more » « less
An official website of the United States government
